Respuesta :

The first-order rate constant for the decomposition of N2O5  

, 2N2O5(g)--> 4NO2(g)+O2(g)  

at 70 C is 6.82x10^-3s-1. Suppose we start with 2.74×10−2 mol of N2O5(g) in a volume of 2.3L .  

How many moles of N2O5 will remain?



The Integrate rate law can be shown as:

[tex]Kt = 2.303 log [A_0] /[A][/tex]

 

K is constant = [tex]6.82*10^-3 s^-1,[/tex]

t is time [tex]= 7min = 7 min * 60 ses/min = 420sec[/tex]

[A_0] is the intial mol  

Molarity = [A_0] = n / V (liter) = 0.0274 /2.3 L = 0.0119 M


[tex]Kt = 2.303 log [A_0] /[A][/tex]

[tex](6.82*10^-3) * 420 = 2.303 log (0.0119) /[A][/tex]

1243 .76 = log (0.0119) – log [A][tex]1243 .76 = log (0.0119) – log [A][/tex]

[tex][A] = 0.0072 mol /L[/tex]

Thus , remaining amount of solute after 7 minute is 0.0072 mol /L


[tex]\boxed{{\text{0}}{\text{.0006789 moles}}}[/tex] of [tex]{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}[/tex] will remain after 7.0 min.

Further Explanation:

Order of reaction:

This determines dependence of rate on power of concentration of reactants involved in any chemical reaction.Reaction can be of first order, second-order, and third-order and so on.

A reaction is said to be first-order reaction if its rate varies directly with the concentration of reactants.

The first-order decomposition of [tex]{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}[/tex] occurs as follows:

 [tex]{\text{2}}{{\text{N}}_{\text{2}}}{{\text{O}}_5} \to 4{\text{N}}{{\text{O}}_2} + {{\text{O}}_2}[/tex]

Since [tex]{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}[/tex] decomposes to form [tex]{\text{N}}{{\text{O}}_{\text{2}}}[/tex] and [tex]{{\text{O}}_{\text{2}}}[/tex] through first-order reaction, its rate constant can be determined with the help of below mentioned formula.

The expression to calculate rate constant for first-order reaction is as follows:

[tex]k = \dfrac{{2.303}}{t}\log \dfrac{{\left[ {{{\text{A}}_{\text{o}}}} \right]}}{{\left[ {{{\text{A}}_t}} \right]}}[/tex]                                                   …… (1)

Here,

k is rate constant.

t is the time.

[tex]\left[ {{{\text{A}}_{\text{o}}}} \right][/tex] isinitial concentration of reactant.

[tex]\left[ {{{\text{A}}_t}} \right][/tex] isconcentration of reactant at time t.

The initial concentration can be calculated as follows:

[tex]\begin{aligned}\left[ {{{\text{A}}_{\text{o}}}} \right] &= \frac{{2.74 \times {{10}^{ - 2}}{\text{ mol}}}}{{2.3{\text{ L}}}} \\&= 0.0119{\text{ M}} \\\end{aligned}[/tex]  

The value of t is 7.0 min.

The value of [tex]\left[ {{{\text{A}}_{\text{o}}}} \right][/tex] is 0.0119 M.

The value of kis [tex]6.82 \times {10^{ - 3}}{\text{ }}{{\text{s}}^{ - 1}}[/tex].

Substitute 7.0 min for t, 0.0119 M for [tex]\left[ {{{\text{A}}_{\text{o}}}} \right][/tex] and [tex]6.82 \times {10^{ - 3}}{\text{ }}{{\text{s}}^{ - 1}}[/tex] for k in equation (1) to calculate [tex]\left[ {{{\text{A}}_t}} \right][/tex] for decomposition of [tex]{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}[/tex].

[tex]6.82 \times {10^{ - 3}}{\text{ }}{{\text{s}}^{ - 1}} = \dfrac{{2.303}}{{\left( {7 \times 60} \right){\text{ s}}}}\log \left( {\dfrac{{{\text{0}}{\text{.0119 M}}}}{{\left[ {{{\text{A}}_t}} \right]}}} \right)[/tex]  

Solving for [tex]\left[ {{{\text{A}}_t}} \right][/tex],

[tex]\left[ {{{\text{A}}_t}} \right] = 0.0006789{\text{ M}}[/tex]  

Therefore 0.0006789 moles of [tex]{{\text{N}}_{\text{2}}}{{\text{O}}_{\text{5}}}[/tex] will remain after 7.0 minutes.

Learn more:

  1. Rate of chemical reaction: https://brainly.com/question/1569924
  2. The main purpose of conducting experiments: https://brainly.com/question/5096428

Answer Details:

Grade: Senior School

Subject: Chemistry

Chapter: Chemical Kinetics

Keywords: order, first-order, N2O5, k, t, 0.0006789 moles, NO2, O2, 7.0 minutes, NO2, O2.