Respuesta :

Riia

The given function is

[tex]y=sin(kt)[/tex]

Differentiating

[tex]y'=kcos(kt)[/tex]

Again differentiating

[tex]y''=-k^2 sin(kt)[/tex]

Substituting the values of y '' and y in

[tex]y''+19y=0[/tex]

We will get

[tex]-k^2 sin(kt)+19sin(kt)=0 \\ sin(kt) (19-k^2)=0 sin(kt) =0, 19-k^2=0 \\ kt = \pi n , k =+- \sqrt{19} \\ k = \frac{ \pi n}{t} , - \sqrt{17}, \sqrt{17}[/tex]

Applying the derivatives, it is found that the differential equation is satisfied for:

[tex]k = n\frac{\pi}{2t}, n = \pm 1, \pm 3, \pm 5, \cdots[/tex]

[tex]k = \pm \sqrt{19}[/tex]

What is the differential equation?

It is given by:

[tex]y^{\prime\prime} + 19y = 0[/tex]

The format of the solution is:

[tex]y = \sin{(kt)}[/tex]

The derivatives are given by:

[tex]y^{\prime} = k\cos{(kt)}[/tex]

[tex]y^{\prime\prime} = -k^2\sin{(kt)}[/tex]

Hence, applying the derivatives into the differential equation:

[tex]y^{\prime\prime} + 19y = 0[/tex]

[tex]-k^2\sin{(kt)} + 19\sin{(kt)} = 0[/tex]

[tex]\sin{(kt)}(-k^2 + 19) = 0[/tex]

Then:

[tex]\sin{(kt)} = 0[/tex]

[tex]kt = n\frac{\pi}{2}, n = \pm 1, \pm 3, \pm 5, \cdots[/tex]

[tex]k = n\frac{\pi}{2t}, n = \pm 1, \pm 3, \pm 5, \cdots[/tex]

Or also:

[tex]-k^2 + 19 = 0[/tex]

[tex]k^2 = 19[/tex]

[tex]k = \pm \sqrt{19}[/tex]

More can be learned about differential equations at https://brainly.com/question/14423176