Part a)
Here in this we can use momentum conservation as there is no external force on it
[tex]m_1v_{1i} + m_2v_{2i} = m_1v_{1f} +m_2v_{2f}[/tex]
here we know that
[tex]m_1 = 0.004 kg[/tex]
[tex]v_{1i} = 650 m/s[/tex]
[tex]m_2 = 0.095[/tex]
[tex]v_{2i} = 0[/tex]
[tex]v_{2f} = 23 m/s[/tex]
now by above equation
[tex]0.004*650 + 0.095* 0 = 0.004*v + 0.095*23[/tex]
[tex]2.6 + 0 = 0.004*v + 2.185[/tex]
[tex]v = 103.75 m/s[/tex]
Part b)
Final kinetic energy of the system
[tex]KE_f = \frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2[/tex]
[tex]KE_f = \frac{1}{2}*0.004*(103.75^2) + \frac{1}{2}*(0.095)*23^2[/tex]
[tex]KE_f = 46.65 J[/tex]
Initial Kinetic energy of the system will be
[tex]KE_f = \frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2[/tex]
[tex]KE_f = \frac{1}{2}*0.004*(650^2) + \frac{1}{2}*(0.095)*0^2[/tex]
[tex]KE_f = 845 J[/tex]
So here kinetic energy is decreased for this system
final energy is less than initial energy