Answer:
EG = 16 and FH =22
Step-by-step explanation:
We know that the diagonals of a parallelogram bisect each other
so 2a = 3b+2
and 2a+3 = 6b-1
We know have a system of equations to solve
2a = 3b+2
2a+3 = 6b-1
Subtract 3 from each side
2a+3-3 = 6b-1-3
2a = 6b -4
Now we can set the 2 equations equal ( 2a = 3b+2 and 2a = 6b -4)
3b+2 = 6b-4
Subtract 3b from each side
3b-3b+2 = 6b-3b-4
2 = 3b-4
Add 4 to each side
2+4 = 3b-4+4
6 = 3b
Divide by 3
6/3 = 3b/3
2 =b
We want to find a
2a = 3b+2
Substitute in b=2
2a = 3(2) + 2
2a = 6+2
2a =8
Divide by 2
2a/2 =8/2
a = 4
Now that we know a and b
EG = 2a + 3b+2
= 2(4) + 3(2)+2
= 8+6+2
= 16
FH = 2a+3 + 6b-1
= 2(4) +3 +6(2)-1
= 8+3+12-1
= 23-1
= 22