Respuesta :
PARALLEL slopes always have the same slope no matter what because they are parallel
Answer:
[tex]y=47x-654[/tex]
Step-by-step explanation:
To find the line parallel to the given linear equation, we have to use the same slope, because the condition of parallelism is that they must have the same slope.
So, the slope of the given line is [tex]m=47[/tex], because it's expressed in slope-intercept form, where the coefficient of the variable x is the slope.
Now, we know that they new parallel lines must have a slope equal to 47, and must pass through (14,4). Using this data, we apply the point-slope formula to find the equation of the new line:
[tex]y-y_{1}=m(x-x_{1})\\y-4=47(x-14)\\y=47x-658+4\\y=47x-654[/tex]
The image attached shows the parallelism.
Therefore, the answer is [tex]y=47x-654[/tex]