Respuesta :
Answer:
A. What figures?: Hexagonal prism topped by a hexagonal cone
B. 246 sq cm
Step-by-step explanation:
A. What figures?
Imagine you're rolling up all 6 vertical pointy pieces around the base hexagon. Then you'll have like a crown top with all the triangles. You can fold these triangles to have their tips meet and form a hexagonal cone...
So, you'll have a hexagonal prism, topped with a hexagonal cone.
B. Surface area.
That's just a matter of calculating the areas of all triangles, rectangles and hexagon of the assembly.
Triangles: base: 4 cm, height: 5 cm, quantity: 6
A = (b * h) / 2 = (4 * 5) / 2 = 10 sq cm
AT = 6 * V = 6 * 10 = 60 sq cm
Rectangles: base: 4 cm, height: 6 cm, quantity: 6
A = b * h = 4 * 6 = 24 sq cm
AR = 6 * V = 6 * 24 = 144 sq cm
Hexagon: side: 4 cm, quantity: 1
Since it's a regular hexagon and we know its side length...
AH = (3√3 * s²)/2 = (3√3 * 16)/2 = 24√3 = 41.57 sq cm
Then we add everything together:
A = AT + AR + AH
A = 60 + 144 + 41.57 = 245.57 sq cm
Rounded answer: 246 sq cm
Answer:
246 cm²
Step-by-step explanation:
The composite space figure consists of:
- One hexagon (side length 4 cm)
- Six rectangles (4 cm x 6 cm)
- Six triangles (base 4 cm, height 5 cm)
The surface area is the sum of all the areas of each figure.
Area of a hexagon = ½√(27) s²
Area of a rectangle = wl
Area of a triangle = ½ bh
So the total area is:
A = ½ √(27) (4)² + 6(4×6) + 6(½×4×5)
A = 8√(27) + 204
A ≈ 246 cm²