By Stokes' theorem, the integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] is equal to the integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex], call it [tex]C[/tex]. Parameterize [tex]C[/tex] by
[tex]\vec r(t)=2\cos t\,\vec\imath+2\sin t\,\vec\jmath[/tex]
with [tex]0\le t\le2\pi[/tex]. So we have
[tex]\displaystyle\iint_S(\nabla\times\vec F)\cdot\mathrm d\vec S=\int_C\vec F\cdot\mathrm d\vec r[/tex]
[tex]=\displaystyle\int_0^{2\pi}(10\sin t\cos 0\,\vec\imath+e^{2\cos t}\sin0\,\vec\jmath+2\cos t\,e^{2\sin t}\,\vec k)\cdot(-2\sin t\,\vec\imath+2\cos t\,\vec\jmath)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}-20\sin^2t\,\mathrm dt[/tex]
[tex]=\displaystyle-10\int_0^{2\pi}(1-\cos2t)\,\mathrm dt=\boxed{-20\pi}[/tex]