Respuesta :

gmany

Answer:

[tex]\large\boxed{x=-1\pm\sqrt5}[/tex]

Step-by-step explanation:

[tex]x^2+2x-4=0\qquad\text{add 4 to both sides}\\\\x^2+2x=4\\\\x^2+2(x)(1)=4\qquad\text{add}\ 1^2=1\ \text{to both sides}\\\\\underbrace{x^2+2(x)(1)+1^2}=4+1^2\qquad\text{use}\ (a+b)^2=a^2+2ab+b^2\\\\(x+1)^2=5\to x+1=\pm\sqrt5\qquad\text{subtract 1 from both sides}\\\\x=-1\pm\sqrt5[/tex]

The two values of x for the given equation are ( -1  + √5 ) and ( - 1 - √5 ).

What is a quadratic equation?

The polynomial having a degree of two or the maximum power of the variable in a polynomial will be 2 is defined as the quadratic equation and it will cut two intercepts on the graph at the x-axis.

The solution of the given equation is:-

=  x²  + 2x - 4

x²  +  2x  =  4

x²  +  2x ( 1 )  +  1²  =  4  +  1²

(  x  +  1  )²  =  5

x  +  1   =  ± √5

x  =  -1  ± √5

Therefore the two values of x for the given equation are ( -1  + √5 ) and ( - 1 - √5 ).

To know more about quadratic equations follow

https://brainly.com/question/1214333

#SPJ2