Answer:
[tex]v_o[/tex] = 357.26 m/s
Explanation:
Given:
first convert both pressures to pascals
Outside pressure = 0.294 atm = 0.294 × 101300 = 29782.2 Pascals
Inside pressure = 1.05 atm = 1.05 × 101300 = 106365 Pascals
Now, using the Bernoulli's equation
, we have
[tex]P_i + \frac{1}{2} \rho v_i^2=P_o + \frac{1}{2} \rho v_o^2[/tex]
where
P is the pressure
v is the velocity
ρ is the density
i denotes the inside
o denotes the outside
the speed inside is approximately zero,thus
[tex]106365 + \frac{1}{2} \times1.20\times 0^2=29782.2 + \frac{1}{2} \times1.20\times v_o^2[/tex]
[tex]76582.8=\frac{1}{2} \times1.20\times v_o^2[/tex]
or
[tex]v_o[/tex] = 357.26 m/s