A rectangular storage container with an open top is to have a volume of 10 m3. The length of this base is twice the width. Material for the base costs $20 per square meter. Material for the sides costs $12 per square meter. Find the cost of materials for the cheapest such container. (Round your answer to the nearest cent.) $

Respuesta :

Answer:

$ 327.08

Step-by-step explanation:

Let w be the width ( in meters ) of the container,

⇒ Length of the container = 2w,

If h be the height of the container,

So, the volume of the container = length × width × height

= 2w × w × h

= 2w² h

According to the question,

[tex]2w^2h=10[/tex]

[tex]\implies h=\frac{10}{2w^2}=\frac{5}{w^2}[/tex]

Now, the area of the base = length × width

[tex]=2w^2[/tex]

Area of sides = 2 × length × height + 2 × width × height

[tex]=2\times 2w\times h+2\times w\times h[/tex]

[tex]=4w\times \frac{5}{w^2}+2w\times \frac{5}{w^2}[/tex]

[tex]=\frac{20}{w}+\frac{10}{w}[/tex]

[tex]=\frac{30}{w}[/tex]

Since, material for the base costs $20 per square meter and material for the sides costs $12 per square meter,

Hence, total cost,

[tex]C(w) = 2w^2\times 20 +\frac{30}{w}\times 12[/tex]

[tex]C(w)=40w^2+\frac{360}{w}[/tex]

Differentiating with respect to w,

[tex]C'(w) = 80w - \frac{360}{w^2}[/tex]

Again differentiating with respect to w,

[tex]C''(w) = 80 +\frac{720}{w^3}[/tex]

For maxima or minima,

C'(w) = 0

[tex]80w - \frac{360}{w^2}=0[/tex]

[tex]80w^3-360=0[/tex]

[tex]80w^3=360[/tex]

[tex]\implies w=\sqrt[3]{\frac{360}{80}}=1.65096362445\approx 1.651[/tex]

For w = 1.651, C''(w) = positive,

Thus, cost is minimum for width 1.651 meters,

And, the minimum cost = C(1.651) = [tex]40(1.651)^2+\frac{360}{1.651}=\$327.081706869\approx \$ 327.08[/tex]

The volume of a container is the amount of space in it.

The cost of materials for the cheapest such container is $327.08

The volume of the container is given as:

[tex]V = 10m^3[/tex]

The length is twice the width;

This means that:

[tex]l =2w[/tex]

The volume of the container is calculated as:

[tex]V = lwh[/tex]

Substitute [tex]l =2w[/tex]

[tex]V = 2w\times wh[/tex]

[tex]V = 2w^2h[/tex]

Substitute [tex]V = 10m^3[/tex]

[tex]2w^2h = 10[/tex]

Divide through by 2

[tex]w^2h = 5[/tex]

Make h the subject

[tex]h = \frac{5}{w^2}[/tex]

The surface area of an open rectangular storage is:

[tex]A =Area\ of\ sides + Area\ of\ base[/tex]

This gives

[tex]A = 2h(l + w) + lw[/tex]

Substitute [tex]l =2w[/tex]

[tex]A = 2h(2w + w) + 2w \times w[/tex]

[tex]A = 2h(2w + w) + 2w^2[/tex]

[tex]A =2h(3w) + 2w^2[/tex]

[tex]A =6hw + 2w^2[/tex]

Substitute [tex]h = \frac{5}{w^2}[/tex]

[tex]A =6w \times \frac{5}{w^2} + 2w^2[/tex]

[tex]A = \frac{30}{w} + 2w^2[/tex]

The base costs $20, and the sides cost $12

So, the cost function is:

[tex]C(w) =12 \times \frac{30}{w} + 2w^2 \times 20[/tex]

[tex]C(w) = \frac{360}{w} + 40w^2[/tex]

Rewrite as:

[tex]C(w) = 360w^{-1}+ 40w^2[/tex]

Differentiate

[tex]C'(w) = -360w^{-2}+ 80w[/tex]

Set to 0

[tex]-360w^{-2}+ 80w = 0[/tex]

Rewrite as:

[tex]-360w^{-2}=- 80w[/tex]

Cancel out the negatives

[tex]360w^{-2}=80w[/tex]

Multiply through by w^2

[tex]360=80w ^3[/tex]

Divide through by 80

[tex]4.5=w ^3[/tex]

Take cube roots of both sides

[tex]w = 1.65[/tex]

Recall that:

[tex]C(w) = 360w^{-1}+ 40w^2[/tex]

So, we have:

[tex]C(1.65) = 360 \times 1.65^{-1} + 40 \times 1.65^2[/tex]

[tex]C(1.65) = 327.08[/tex]

Hence, the cost of materials for the cheapest such container is $327.08

Read more about maximizing and minimizing functions at:

https://brainly.com/question/12313753