Answer:
[tex]q=49Q/64[/tex]
and
[tex]x =16R/15 [/tex]
Explanation:
See attached figure.
[tex]E_{Q}=[/tex] E due to sphere
[tex]E_{q}=[/tex] E due to particule
[tex]E_{total}=E_{Q}-E_{q}=0[/tex] (1)
according to the law of gauss and superposition Law:
[tex]E_{Q}=E_{1}+E_{2}=E_{2}[/tex] ; electric field due to the small sphere with r1=R/4
[tex]E_{Q}=kq_{2}/(r_{1}^{2})=[/tex]
[tex]q_{2}=density*4/3*pi*r_{1}^{3}=Q/(4/3*pi*R^{3})*4/3*pi*r_{1}^{3}=Q*r_{1}^{3}/R^{3}[/tex]
then: [tex]E_{Q}=kq_{2}/(r_{1}^{2})=k*Q*r_{1}^{3}/(R^{3}*r_{1}^{2}) = kQ/(4*R^{2})[/tex] (2)
on the other hand, for the particule:
[tex]E_{q}=kq/(r_{p}^{2})[/tex]
[tex]r_{p}=2R-R/4=7R/4[/tex] ⇒ [tex]E_{q}=16kq/(49R^{2})[/tex] (3)
We replace (2) y (3) in (1):
[tex]E_{total}=E_{Q}-E_{q}=0=kQ/(4*R^{2}) - 49kq/(16R^{2})[/tex]
[tex]q=49Q/64[/tex]
--------------------
if R<x<2R AND [tex]E_{total}=E_{Q}-E_{q}=0[/tex]
[tex]E_{total}=E_{Q}-E_{q}=0=kQ/(x^{2}) - kq/(2R-x^{2})[/tex]
remember that [tex]q=49Q/64[/tex]
then:
[tex]Q(2R-x^{2})=49/64*x^{2}[/tex]
solving:
[tex]x_{1} =16R/15[/tex]
[tex]x_{2} =16R[/tex]
but: R<x<2R
so : [tex]x =16R/15 [/tex]