Respuesta :
Answer: [tex]15.21 \°C[/tex]
Explanation:
We will use the the conservation of energy principle to solve this problem. In this sense, for the case of the Kerepakupai Vena waterfall the energy at the top must be equal to the energy at the bottom:
[tex]E_{top}=E_{bottom}[/tex] (1)
[tex]E_{top}=K_{top}+U_{top}[/tex] (2)
[tex]E_{bottom}=K_{bottom}+U_{bottom}[/tex] (3)
Where [tex]K_{top}[/tex] and [tex]U_{top}[/tex] are the kinetic an potential energy at the top of the waterfall, respectively; and [tex]K_{bottom}[/tex] and [tex]U_{bottom}[/tex] are the kinetic an potential energy at the bottom of the waterfall, respectively.
Since we are told the kinetic energy of the water is converted into thermal energy [tex]Q[/tex], we have:
[tex]K_{top}=Q_{top}[/tex] and [tex]K_{bottom}=Q_{bottom}[/tex]
Hence (2) and (3) are rewritten as:
[tex]E_{top}=Q_{top}+U_{top}[/tex] (4)
[tex]E_{bottom}=Q_{bottom}+U_{bottom}[/tex] (5)
Then:
[tex]Q_{top}+U_{top}=Q_{bottom}+U_{bottom}[/tex] (6)
On the other hand we know the potential energy for both cases is:
[tex]U_{top}=mgh_{top}[/tex] and [tex]U_{bottom}=mgh_{bottom}[/tex]
Where:
[tex]m[/tex] is the mass of water
[tex]g=9.8 m/s^{2}[/tex] is the acceleration due gravity
[tex]h_{top}=807 m[/tex] is the height at the top
[tex]h_{bottom}=0 m[/tex] is the height at the bottom of the waterfall
In addition, the thermal energy for both cases is:
[tex]Q_{top}=m. c. T_{top}[/tex] and [tex]Q_{bottom}=m. c. T_{bottom}[/tex]
Where:
[tex]c=1 \frac{kcal}{kg \°C}=4.186(10)^{3} \frac{J}{kg \°C}[/tex] is the specific of water
[tex]T_{top}=[/tex] is the temperature at the top
[tex]T_{bottom}=17.1 \°C[/tex] is the temperature at the bottom
So, keeping this in mind, equation (6) is rewritten as:
[tex]m. c. T_{top}+mgh_{top}=m. c. T_{bottom}+mgh_{bottom}[/tex] (7)
Since [tex]h_{bottom}=0 m[/tex]:
[tex]m. c. T_{top}+mgh_{top}=m. c. T_{bottom}[/tex] (8)
Finding [tex]T_{bottom}-T_{top}= \Delta T[/tex]:
[tex]T_{bottom}-T_{top}=\Delta T=\frac{gh}{c}[/tex] (9)
Solving:
[tex]\Delta T=\frac{(9.8 m/s^{2})(807 m)}{4.186(10)^{3} \frac{J}{kg \°C}}[/tex] (10)
[tex]\Delta T=1.889 \°C[/tex] (11)
Now that we have [tex]\Delta T[/tex] and [tex]T_{bottom}[/tex] we can finally find [tex]T_{top}[/tex]:
[tex]T_{top}=\Delta T-T_{bottom}[/tex] (12)
[tex]T_{top}=1.889 \°C-17.1 \°C[/tex] (13)
Therefore:
[tex]T_{top}=15.21 \°C[/tex]