Answer:
The solution of the diferential equation is:
[tex]y(t)=\frac{1}{2}cos(t)- \frac{1}{2}e^{t}+\frac{t}{2} e^{t}[/tex]
Step-by-step explanation:
Given [tex]y" + y = te^{t}[/tex]; y(0) = 0 ; y'(0) = 0
We need to use the Laplace transform to solve it.
ℒ[y" + y]=ℒ[[tex]te^{t}[/tex]]
ℒ[y"]+ℒ[y]=ℒ[[tex]te^{t}[/tex]]
By using the Table of Laplace Transform we get:
ℒ[y"]=s²·ℒ[y]+s·y(0)-y'(0)=s²·Y(s)
ℒ[y]=Y(s)
ℒ[[tex]te^{t}[/tex]]=[tex]\frac{1}{(s-1)^{2}}[/tex]
So, the transformation is equal to:
s²·Y(s)+Y(s)=[tex]\frac{1}{(s-1)^{2}}[/tex]
(s²+1)·Y(s)=[tex]\frac{1}{(s-1)^{2}}[/tex]
Y(s)=[tex]\frac{1}{(s^{2}+1)(s-1)^{2}}[/tex]
To be able to separate in terms, we use the partial fraction method:
[tex]\frac{1}{(s^{2}+1)(s-1)^{2}}=\frac{As+B}{s^{2}+1} +\frac{C}{s-1}+\frac{D}{(s-1)^2}[/tex]
1=(As+B)(s-1)² + C(s-1)(s²+1)+ D(s²+1)
The equation is reduced to:
1=s³(A+C)+s²(B-2A-C+D)+s(A-2B+C)+(B+D-C)
With the previous equation we can make an equation system of 4 variables.
The system is given by:
A+C=0
B-2A-C+D=0
A-2B+C=0
B+D-C=1
The solution of the system is:
A=1/2 ; B=0 ; C=-1/2 ; D=1/2
Therefore, Y(s) is equal to:
Y(s)=[tex]\frac{s}{2(s^{2} +1)} -\frac{1}{2(s-1)} +\frac{1}{2(s-1)^{2}}[/tex]
By using the inverse of the Laplace transform:
ℒ⁻¹[Y(s)]=ℒ⁻¹[[tex]\frac{s}{2(s^{2} +1)}[/tex]]-ℒ⁻¹[[tex]\frac{1}{2(s-1)}[/tex]]+ℒ⁻¹[[tex]\frac{1}{2(s-1)^{2}}[/tex]]
[tex]y(t)=\frac{1}{2}cos(t)- \frac{1}{2}e^{t}+\frac{t}{2} e^{t}[/tex]