The wavefunction of a particle confined to the x axis is ψ = e-x for x > 0 and ψ = ex for x <0. Show that the wavefunction is normalized and calculate the probablilty of finding the particle betweenx-0.5 and x 0.5.

Respuesta :

First part

The wavefunction is

[tex]\psi = \left \{ {{e^{-x} \ \ x\ge0} \atop {e^{x} \ \ x<0}} \right.[/tex]

As we know, the wavefunction is normalized if:

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  =1[/tex]

Lets prove it:

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = \int\limits^{0 } _{-\infty } {|\psi(x)|^2} \, dx  + \int\limits^{\infty } _{0 } {|\psi(x)|^2} \, dx [/tex]

[tex]\ \int\limits^{0 } _{-\infty } {(e^{x} )^2} \, dx  + \int\limits^{\infty } _{0 } {(e^{-x}) ^2} \, dx [/tex]

Lets take the first integral

[tex]\ \int\limits^{0 } _{-\infty } {(e^{x} )^2} \, dx [/tex]

we can use the substitution

[tex]x = -y \\\\dx = - dy[/tex]

when x= 0 then y = 0, and when [tex]x= - \infty[/tex]  , [tex]y=\infty[/tex]

[tex]\ \int\limits^{0 } _{\infty } {(e^{-y} )^2} \, (-dy) [/tex]

[tex]\ - \int\limits^{0 } _{\infty } {(e^{-y} )^2} \, dy [/tex]

inverting the limits of integration to take care of the minus sign

[tex]\ \int\limits^{ \infty} _{0 } {(e^{-y} )^2} \, (dy) [/tex]

but this is the second integral!!!

so

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = 2 * \int\limits^{\infty } _{0 } {{e^{-2x} } \, dx [/tex]

now, we can see that

[tex]\frac{d}{dt} e^{-2x} = -2 e^{-2x}[/tex]

so

[tex] \frac{1}{-2} \frac{d}{dt} e^{-2x} = e^{-2x}[/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = 2 * \int\limits^{\infty } _{0 } { \frac{1}{-2}  * \frac{d}{dt} e^{-2x} } \, dx [/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = \frac{2}{-2}  *   \int\limits^{\infty } _{0 } {  \frac{d}{dt} e^{-2x} } \, dx [/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = -1  *  [ \right e^{-2x} \left ] ^{\infty } _{0 } [/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = -1  * [ ( \lim_{x\rightarrow \infty } e^{-2x} ) -e^{-2*0} ]   [/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = -1  * ( 0 - 1)    [/tex]

[tex]\int\limits^{\infty } _{-\infty } {|\psi(x)|^2} \, dx  = 1  [/tex]

This is what we wanted to show!

Second part

We just need to obtain [tex]p(|x| \le 0.5)[/tex]:

[tex]p(|x| \le 0.5) = \int\limits^{0.5 } _{-0.5 } {|\psi(x)|^2} \, dx [/tex]

We can use the same approach:

[tex]\int\limits^{0.5 } _{-0.5 } {|\psi(x)|^2} \, dx  = \int\limits^{0 } _{-0.5 } {|\psi(x)|^2} \, dx  + \int\limits^{0.5 } _{0 } {|\psi(x)|^2} \, dx [/tex]

[tex]\ \int\limits^{0 } _{-0.5 } {(e^{x} )^2} \, dx  + \int\limits^{0.5 } _{0 } {e^{-x} ^2} \, dx [/tex]

[tex] p(|x| \le 0.5) = 2 * \int\limits^{0.5} _{0 } {{e^{-2x} } }\, dx [/tex]

[tex] p(|x| \le 0.5) = 2 * \int\limits^{0.5} _{0 } {\frac{1}{-2} \frac{d}{dt} e^{-2x} } \, dx [/tex]

[tex] p(|x| \le 0.5) = -1 *   [ \right e^{-2x} \left ]  ^{0.5} _{0 } [/tex]

[tex] p(|x| \le 0.5) = -1 *   (e^{-1} - 1) [/tex]

[tex] p(|x| \le 0.5) = 0.6321  [/tex]