An infinitely long cylindrical insulating shell of inner radius a and outer radius b has a uniform volume charge density p. Determine the electric field everywhere.

Respuesta :

Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;

c) r>b E=ρ b (b-a)/r*εo

Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.

As we know,

∫E.dr= Qinside/εo

For r<a --->Qinside=0 then E=0

for a<r<b er have

E*2π*r*L= Q inside/εo       in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L

E*2π*r*L =ρ*2*π*r* (r-a)*L/εo

E=ρ*(r-a)/εo

Finally for r>b

E*2π*r*L =ρ*2*π*b* (b-a)*L/εo

E=ρ*b* (b-a)*/r*εo

The electric field is the field, which is surrounded by the electric charged.

The electric field for each case is,

  • Case 1- [tex]0

         [tex]E=\dfrac{2k_6 \lambda}{r}[/tex]

  • Case 2- [tex]a

      [tex]E=\dfrac{2k_6 [\lambda+\rho \pi(r^2-a^2)]}{r}[/tex]

  • Case 3- [tex]r>b[/tex]

       [tex]E=\dfrac{2k_6 [\lambda+\rho \pi(b^2-a^2)]}{r}[/tex]

What is electric field?

The electric field is the field, which is surrounded by the electric charged. The electric field is the electric force per unit charge.

Given information-

The inner radius of the infinitely long cylindrical insulating shell is [tex]a[/tex].

The outer radius of the infinitely long cylindrical insulating shell is [tex]b[/tex].

The uniform volume charge density is [tex]\rho[/tex].

Let [tex]r[/tex] is the radius of the [tex]L[/tex] is the length. Thus,

  • Case 1- [tex]0

By the Gauss's law,

[tex]E(2\pi rL)=4\pi k_6 (\lambda L)\\E=\dfrac{2k_6 \lambda}{r}[/tex]

  • Case 2- [tex]a

The volume for this case can be given as,

[tex]V=\pi r^2L -\pi a^2 L\\V=\pi L(r^2-a^2)[/tex]

Put this values in the Gauss's law,

[tex]E(2\pi rL)=4\pi k_6 (\lambda L+\rho V)\\E(2\pi rL)=4\pi k_6 (\lambda L+\rho \pi L(r^2-a^2))\\E=\dfrac{2k_6 [\lambda+\rho \pi(r^2-a^2)]}{r}[/tex]

  • Case 3- [tex]r>b[/tex]

The volume for this case can be given as,

[tex]V=\pi b^2L -\pi a^2 L\\V=\pi L(b^2-a^2)[/tex]

Put this values in the Gauss's law,

[tex]E(2\pi rL)=4\pi k_6 (\lambda L+\rho V)\\E(2\pi rL)=4\pi k_6 (\lambda L+\rho \pi L(b^2-a^2))\\E=\dfrac{2k_6 [\lambda+\rho \pi(b^2-a^2)]}{r}[/tex]

Thus the electric field for each case is,

  • Case 1- [tex]0

         [tex]E=\dfrac{2k_6 \lambda}{r}[/tex]

  • Case 2- [tex]a

      [tex]E=\dfrac{2k_6 [\lambda+\rho \pi(r^2-a^2)]}{r}[/tex]

  • Case 3- [tex]r>b[/tex]

       [tex]E=\dfrac{2k_6 [\lambda+\rho \pi(b^2-a^2)]}{r}[/tex]

Learn more about electric field here;

https://brainly.com/question/14372859