A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is 3 x 10-18 kg/m3. If all the particles of dust that impact the spaceship stick to it, find the average decelerating force that the impacting particles exert on the ship. (You may assume that the mass of dust which sticks to the spacecraft is negligible compared to the mass of the spacecraft.)

Respuesta :

Answer:

The decelerating force is [tex]3\times 10^{- 11}\ N[/tex]

Solution:

As per the question:

Frontal Area, A = [tex]10\ m^{2}[/tex]

Speed of the spaceship, v = [tex]1\times 10^{6}\ m/s[/tex]

Mass density of dust, [tex]\rho_{d} = 3\times 10^{- 18}\ kg/m^{3}[/tex]

Now, to calculate the average decelerating force exerted by the particle:

[tex]Mass,\ m = \rho_{d}V[/tex]                                (1)

Volume, [tex]V = A\times v\times t[/tex]

Thus substituting the value of volume, V in eqn (1):

[tex]m = \rho_{d}(Avt)[/tex]

where

A = Area

v = velocity

t = time

[tex]m = \rho_{d}(A\times v\times t)[/tex]                  (2)

[tex]Momentum,\ p = \rho_{d}(Avt)v = \rho_{d}Av^{2}t[/tex]

From Newton's second law of motion:

[tex]F = \frac{dp}{dt}[/tex]

Thus differentiating w.r.t time 't':

[tex]F_{avg} = \frac{d}{dt}(\rho_{d}Av^{2}t) = \rho_{d}Av^{2}[/tex]

where

[tex]F_{avg}[/tex] = average decelerating force of the particle

Now, substituting suitable values in the above eqn:

[tex]F_{avg} = 3\times 10^{- 18}\times 10\times 1\times 10^{6} = 3\times 10^{- 11}\ N[/tex]