Answer:
Loss, [tex]\Delta E=-10.63\ J[/tex]
Explanation:
Given that,
Mass of particle 1, [tex]m_1=m =0.66\ kg[/tex]
Mass of particle 2, [tex]m_2=7.4m =4.884\ kg[/tex]
Speed of particle 1, [tex]v_1=2v_o=2\times 6=12\ m/s[/tex]
Speed of particle 2, [tex]v_2=v_o=6\ m/s[/tex]
To find,
The magnitude of the loss in kinetic energy after the collision.
Solve,
Two particles stick together in case of inelastic collision. Due to this, some of the kinetic energy gets lost.
Applying the conservation of momentum to find the speed of two particles after the collision.
[tex]m_1v_1+m_2v_2=(m_1+m_2)V[/tex]
[tex]V=\dfrac{m_1v_1+m_2v_2}{(m_1+m_2)}[/tex]
[tex]V=\dfrac{0.66\times 12+4.884\times 6}{(0.66+4.884)}[/tex]
V = 6.71 m/s
Initial kinetic energy before the collision,
[tex]K_i=\dfrac{1}{2}(m_1v_1^2+m_2v_2^2)[/tex]
[tex]K_i=\dfrac{1}{2}(0.66\times 12^2+4.884\times 6^2)[/tex]
[tex]K_i=135.43\ J[/tex]
Final kinetic energy after the collision,
[tex]K_f=\dfrac{1}{2}(m_1+m_2)V^2[/tex]
[tex]K_f=\dfrac{1}{2}(0.66+4.884)\times 6.71^2[/tex]
[tex]K_f=124.80\ J[/tex]
Lost in kinetic energy,
[tex]\Delta K=K_f-K_i[/tex]
[tex]\Delta K=124.80-135.43[/tex]
[tex]\Delta E=-10.63\ J[/tex]
Therefore, the magnitude of the loss in kinetic energy after the collision is 10.63 Joules.