Suzie is making a large batch of brownies with her mother. The recipe calls for 4 2/3 cups of sugar. The only measuring device she has measures 1/3 cup. How many of these will Suzie have to fill and pour in order to add enough sugar?

Respuesta :

Answer:

14 of these device have to fill and pour in order to add enough sugar.

Step-by-step explanation:

Given:

The recipe calls for 4 2/3 cups of sugar. The only measuring device which measures 1/3 cup.

Now, to get how many of this device have to fill and pour in order to add enough sugar.

First we convert the quantity in improper fraction from mixed :

[tex]4\frac{2}{3} = \frac{14}{3}[/tex]

According to question:

We divide 14/3 cups of sugar by 1/3 measuring cup to get quantity of device to be fill and pour:

[tex]\frac{14}{3} \div \frac{1}{3}[/tex]

[tex]\frac{14}{3}\times \frac{3}{1}[/tex]

Now, by evaluating we get:

[tex]14[/tex]

Therefore, 14 of these device have to fill and pour in order to add enough sugar.