A bicyclist is training for a race on a hilly path. Their bike keeps track of their speed at any time, but not the distance traveled. Their speed traveling up a hill is 3mph, 8mph when traveling down a hill, and 5mph when traveling along a flat portion. Part A. Construct linear models that describe their distance, D in miles, on a particular portion of the path in terms of the time, t in hours, spent on that part of the path.

Respuesta :

Answer:

[tex]D_{up}(t)=3t[/tex]

[tex]D_{down}(t)=8t[/tex]

[tex]D_{flat}(t)=5t[/tex]

Explanation:

To construct a linear model of their distance, in miles, as a function of time in hours, since we were given their traveling speed in miles per hour, simply multiply the traveling speed in mph by the time, t, in hours.

When traveling up a hill:

[tex]D_{up}(t)=3t[/tex]

When traveling down a hill:

[tex]D_{down}(t)=8t[/tex]

When traveling along a flat portion:

[tex]D_{flat}(t)=5t[/tex]