Answer:
The approximate value of Planck's constant is [tex]6.377\times10^{-34}\ J[/tex]
Explanation:
Given that,
Frequency [tex]f_{1}= 547.5\ THz[/tex]
Kinetic energy [tex]K.E=1.260\times10^{-19}\ J[/tex]
Frequency [tex]f_{2}=738.8\ THz[/tex]
Kinetic energy [tex]K.E=2.480\times10^{-19}\ J[/tex]
We need to calculate the approximate value of Planck's constant
Using formula of change in energy
[tex]E = hf[/tex]
[tex]K.E_{2}-K.E_{1}=h(f_{2}-f_{1})[/tex]
[tex]h=\dfrac{K.E_{2}-K.E_{1}}{(f_{2}-f_{1})}[/tex]
[tex]h=\dfrac{2.480\times10^{-19}-1.260\times10^{-19}}{738.8\times10^{12}-547.5\times10^{12}}[/tex]
[tex]h=6.377\times10^{-34}\ J[/tex]
Hence, The approximate value of Planck's constant is [tex]6.377\times10^{-34}\ J[/tex]