A 2-kg wood block is pulled by a string across a rough horizontal floor. The string exerts a tension force of 30 N on the block at an angle of 20º above the horizontal. The block moves at constant speed. If the block is pulled for a distance of 3.0 m, how much work is done by the tension force?

Respuesta :

Answer:

Work done, W = 84.57 Joules

Explanation:

It is given that,

Mass of the wooden block, m = 2 kg

Tension force acting on the string, F = 30 N

Angle made by the block with the horizontal, [tex]\theta=20^{\circ}[/tex]

Distance covered by the block, d = 3 m

Let W is the work done by the tension force. It can be calculated as :

[tex]W=F\ cos\theta\times d[/tex]

[tex]W=30\times cos(20)\times 3[/tex]

W = 84.57 Joules

So, the work done by the tension force is 84.57 Joules. Hence, this is the required solution.

Lanuel

The quantity of work done by this tension force is equal to 84.57 Joules.

Given the following data:

Mass of wooden block, m = 2 kg

Tension force, F = 30 N

Angle = 20°

Distance, d = 3 m.

How to calculate the quantity of work done?

In Science, work done is generally calculated by multiplying tension force and the vertical distance experienced by an object.

Mathematically, this is given by:

W = Fdcosθ

W = 30 × 3.0 × cos20

Work done, W = 84.57 Joules.

Read more on work done here: brainly.com/question/22599382

#SPJ5