A small car and a heavy pickup truck are both out of gas. The truck has twice the mass of the car. After you push both the car and the truck for the same amount of time with the same force, what can you say about the momentum and kinetic energy (KE) of the car and the truck? Ignore friction.

a. They have the same momentum, but the car has more kinetic energy than the truck.
b. They have the same momentum and the same KE.
c. They have the same kinetic energy, but the truck has more momentum than the car.
d. The car has more momentum and more KE than the truck.
e. The truck has more momentum and more KE than the car.

Respuesta :

Answer:

They have the same momentum, but the car has more kinetic energy than the truck.

Explanation:

Let [tex]m_c[/tex] is the mass of the car and [tex]m_t[/tex] is the mass of truck such that,

[tex]m_t=2m_c[/tex]

You push both the car and the truck for the same amount of time with the same force. Momentum of an object is given by :

[tex]p=mv=F\times t[/tex]

Since, force and time are same, so they have same momentum. The kinetic energy of an object is given by :

[tex]K=\dfrac{1}{2}mv^2[/tex]

Since, the mass of truck is more, it will have maximum kinetic energy. So, the correct option is (a) "They have the same momentum, but the car has more kinetic energy than the truck".

The car has more momentum and more KE than the truck because car mass is lower so it moves fast as compared to truck.

Relationship between mass, momentum and kinetic energy

Momentum is the product of its mass and velocity. When we compare car with truck , car has a lower mass so when the mass is lower the velocity will be higher so car has more momentum.

We also know that kinetic energy also depends on mass so less mass have more kinetic energy.

Learn more about kinetic energy here: https://brainly.com/question/20658056