Respuesta :
Answer:
y = 0.7865x + 0.2413
Step-by-step explanation:
[tex]\begin{array}{rrc}\mathbf{x} & \mathbf{y} & \mathbf{\log(y)}\\1 & 13 & 1.114\\2 & 55 & 1.740\\3 & 349 & 2.543\\4 &2407 & 3.381\\5 &16813 & 4.226\\\end{array}[/tex]
I plotted both your original and transformed data in Excel and asked it to display the regression equation for the transformed data.
Your original data are the blue line plotted against the left-hand axis.
Your transformed data are the red line, plotted against the right-hand axis.
The linear regression equation is
y = 0.7865x + 0.2413
The answer is y = 0.7865x + 0.2413
The Linear regression equation for the transformed data:
We transform the predictor (x) values only. We transform the response (y) values only. We transform both the predictor (x) values and response (y) values.
Find the linear regression equation for the transformed data?
(1, 13) 1.114
(2, 55) 1.740
(3, 349) 2.543
(4, 2407) 3.381
(5, 16, 813) 4.226
X Y Log(y)
1 13 1.114
2 55 1.740
3 349 2.543
4 2407 3.381
5 16813 4.226
The linear regression equation is y = 0.7865x + 0.2413
The graph is plotted below:
Original data are the blue line plotted against the left-hand axis and transformed data are the red line, plotted against the right-hand axis.
Learn more about linear regression equations on: https://brainly.com/question/3532703
#SPJ2