Respuesta :

Answer:

The aircraft has a height of 1000 m at t=2 sec, and at t=8 sec

Step-by-step explanation:

Finding Exact Roots Of Polynomials

A polynomial can be expressed in the general form    

[tex]\displaystyle p(x)=a_nx^n+a_{n-1}\ x^{n-1}+...+a_1\ x+a_0}[/tex]  

The roots of the polynomial are the values of x for which    

[tex]P(x)=0[/tex]

Finding the roots is not an easy task and trying to find a general solution has been discussed for centuries. One of the best possible approaches is trying to factor the polynomial. It requires a good eye and experience, but it gives excellent results.    

The function for the trajectory of an aircraft is given by    

[tex]\displaystyle h(x)=0.5(-t^4+10t^3-216t^2+2000t-1200)[/tex]

We need to find the values of t that make H=1000, that is

[tex]\displaystyle 0.5(-t^4+10t^3-216t^2+2000t-1200)=1000[/tex]

Dividing by -0.5

[tex]\displaystyle t^4-10t^3+216t^2-2000t+1200=-2000[/tex]

Rearranging, we set up the equation to solve

[tex]\displaystyle t^4-10t^3+216t^2-2000t+3200=0[/tex]

Expanding some terms

[tex]\displaystyle t^4-8t^3-2t^3+200t^2+16t^2-1600t-400t+3200=0[/tex]

Rearranging

[tex]\displaystyle t^4-8t^3+200t^2-1600t-2t^3+16t^2-400t+3200=0[/tex]

Factoring

[tex]\displaystyle t(t^3-8t^2+200t-1600)-2(t^3-8t^2+200t-1600)=0[/tex]

[tex]\displaystyle (t-2)(t^3-8t^2+200t-1600)=0[/tex]

This produces our first root t=2. Now let's factor the remaining polynomial

[tex]\displaystyle t^2(t-8)+200(t-8)=0[/tex]

[tex]\displaystyle (t^2+200)(t-8)=0[/tex]

This gives us the second real root t=8. The other two roots are not real numbers, so we only keep two solutions

[tex]\displaystyle t=2,\ t=8[/tex]