Answer:
[tex]Sin(Cos^{-1} (14x))=\sqrt{1-196x^2}[/tex]
Step-by-step explandation:
First of all, from the figure we can define the cosine and sine functions as
[tex]Cos(theta)=\frac{adjacent }{hypotenuse }[/tex]
[tex]Sin(theta)=\frac{Opposite}{hypotenuse }[/tex]
And by analogy with the statement:
[tex]14x=\frac{adjacent }{hypotenuse }[/tex]
Which can be rewritten as:
[tex]\frac{14x}{1}=\frac{adjacent }{hypotenuse }[/tex]
You have then that, for the given triangle, the values of the adjacent and hypotenuse sides, are then given by:
:
Adjacent=14x
Hypotenuse=1
And according to the Pythagorean theorem:
[tex] Opposite=\sqrt{1-(14x)^2}[/tex]
Finally, by doing:
[tex]Cos^-1(14x)=theta[/tex]
We have that:
[tex]Sin(Cos^{-1} (14x))=Sen(theta)=\frac{Opposite}{hypotenuse}=\frac{\sqrt{1-(14x)^2}}{1}=\sqrt{1-(14x)^2}[/tex]