The earth has radius R. A satellite of mass 100 kg is in orbit at an altitude of 3R above the earth's surface. What is the satellite's weight at the altitude of its orbit

Respuesta :

Answer:

W= 61.3 N

Explanation:

The only force acting on the satellite is the one due to the attraction from Earth, which obeys the Newton's Universal Law of Gravitation, as follows:

Fg =G*ms*me / (res)²

This force, also obeys the Newton's 2nd Law, so we can write the following equation:

G*ms*me*/ (res)² = ms* a = ms*g

We call to the product of the mass times the acceleration caused by gravity (g), the weight of this mass, so we can write as follows:

G*ms*me / (res)² = ms*g = W (1)

where G = 6.67*10⁻11 N*m²/kg², ms= 100 kg, me= 5.97*10²⁴ kg, and

res=  4 *re = 4*6.37*10⁶ m.

Replacing all these known values in (1), we get the value of W:

W =(( 6.67*5.97/(4*6.37)²) *( 10⁻¹¹ * 10²⁴ /10¹²) )* 100 N = 61.3 N

The satellite's weight at the altitude of its orbit is;

61.31 N

Formula for gravitational force is;

F = GMm/R²

Where;

G is gravitational constant = 6.67 × 10⁻¹¹ N.m²/kg²

m is mass of earth = 5.97 × 10²⁴ kg

M is mass of satellite = 100 kg

Now, we are told that the altitude is 3R above the Earth's surface.

At the Earth's surface, the distance from the Earth's center is R where R is radius of earth.

Thus, total altitude from the Earth's center to the satellite it (3R + R) = 4R

Thus;

F = GMm/(4R)²

Where R is radius of earth = 6371 × 10⁶ m

Thus;

F = (6.67 × 10⁻¹¹ × 100 × 5.97 × 10²⁴)/(4 × 6371 × 10⁶)

F = 61.31 N

Now, from Newton's second law of motion, we know that the force is equal to the weight.

Thus;

Weight = 61.31 N

Read more about gravitational weight at; https://brainly.com/question/20629991