Answer:
Part 1) The slope is [tex]m=25[/tex] (the cost of the gym is $25 per month)
Part 2) The y-intercept is the point (0,-100) see the explanation
Part 3) [tex]y=25x-100[/tex], After 14 months the cost is [tex]\$250[/tex]
Step-by-step explanation:
Part 1) What is the slope of the line
Let
x ---> the number of months
y ---> the total cost in dollars
we know that
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
From the graph take two points
(0,-100) and (4,0)
substitute the values in the formula
[tex]m=\frac{0+100}{4-0}[/tex]
[tex]m=\frac{100}{4}[/tex]
[tex]m=25[/tex]
Remember that the slope is equal to the unit rate of the linear equation
That means ----> the cost of the gym is $25 per month
Part 2) What is the y-intercept of the line
we know that
The y-intercept is the value of y when the value of x is equal to zero
Looking at the graph the y-intercept is the point (0,-100)
In context this problem, the y-intercept represent the rebate of $100 that the gym was offering for sign up for a full year
Part 3) What is the linear equation for the line in this situation? What is the cost of the gym membership after 14 months
we know that
The linear equation in slope intercept form is equal to
[tex]y=mx+b[/tex]
where
m is the slope
b is the y-intercept
we have
[tex]m=25[/tex]
[tex]b=-100[/tex]
substitute the values
[tex]y=25x-100[/tex]
For x=14 months
substitute
[tex]y=25(14)-100[/tex]
[tex]y=350-100=\$250[/tex]