The ammonia molecule (NH3) has a dipole moment of 5.0×10?30C?m. Ammonia molecules in the gas phase are placed in a uniform electric field E? with magnitude 1.8×106 N/C .

At what absolute temperature T is the average translational kinetic energy 32kT of a molecule equal to the change in potential energy calculated in part (a)? (Note: Above this temperature, thermal agitation prevents the dipoles from aligning with the electric field.)

Respuesta :

Question (continuation)

(a) What is the change in electric potential energy when the dipole moment of a molecule changes its orientation with respect to E S from parallel to perpendicular?

(b) At what absolute temperature T is the average translational kinetic energy 3/2kT of a molecule equal to the change in potential energy calculated in part (a)?

Answer:

a. 9.0 * 10^-24 Joules

b. 0.44K

Explanation:

Given

Let p = dipole moment = 5.0 * 10^-30 Cm

Let E = Magnitude = 1.8 * 10^6 N/m

a.

The charge in electric potential = Final Charge - Initial Charge

Initial Charge = Potential Energy

Initial Energy = -pE cosФ where Ф = 0

So, initial Energy = - 5.0 * 10^-30 * 1.8 * 10^6

Initial Energy = -9 * 10^-24 Joules

Final Energy = 0

Charge = 0 - (-9.0 * 10^-24)

Charge = 9.0 * 10^-24 Joules

b.

Absolute Temperature

Change in Kinetic Energy = Change in Potential Energy = 9.0 * 10^-24

Change in Kinetic Energy = 3/2kT where k is Steven-Boltzmann constant = 1.38 * 10^-23

So,

9.0 * 10^-24 = 3/2 * 1.38 * 10^-23 * T

T = (9.0 * 10^-24 * 2)/(3 * 1.38 * 10^-23)

T = (18 * 10^-24)/(4.14 * 10^-23)

T = 0.44K