Answer:
There were 7 small boxes and 14 large boxes shipped.
Step-by-step explanation:
This problem may be solved by a system of equations:
I am going to say that:
x is the number of small boxes used
y is the number of large boxes used
There were twice as many large boxes shipped as small boxes shipped
This means that [tex]y = 2x[/tex]
Each small box of paper weighs 45 pounds and each large box of paper weighs 80 pounds. The total weight of all boxes was 1435 pounds.
This means that [tex]45x + 80y = 1435[/tex]
So we have to solve the following system:
[tex]y = 2x[/tex]
[tex]45x + 80y = 1435[/tex]
[tex]45x + 80(2x) = 1435[/tex]
[tex]205x = 1435[/tex]
[tex]x = \frac{1435}{205}[/tex]
[tex]x = 7[/tex]
[tex]y = 2x = 2(7) = 14[/tex]
There were 7 small boxes and 14 large boxes shipped.