Answer:
[tex] m_i =\frac{1736.702 cal}{129 cal/gr}=13.46 gr[/tex]
So we need to add 13.46 gr of ice in order to reach the final equilibrium temperature of 49 C
Explanation:
For this case we need to use the fact that the sum for all the heats involved in the system are 0, since we assume an equilibrium state.
Data given
[tex]m_p = 303 gr[/tex] mass of the porcelain cup
[tex] cp_p = 0.260 cal/g C[/tex] the specific heat for the porcelain cup
[tex] T_{ip} = T_{ic}= 71 C[/tex] initial temperature for the coffee and the porcelain cup.
[tex] V_{c}= 161 cm^3[/tex] Volume of the coffee.
We can convert this to m^3 and we got 0.000161m^3 and assuming the density fot the coffee equal to the water 1 Kg/m^3 the mass would be:
[tex] m_c = 1 kg/m^3 *0.000161 m^3 = 0.000161 kg=0.161 Kg[/tex]
[tex] Cp_{c} = 1 cal/g C[/tex] Specific heat for the coffee
[tex] m_i =?[/tex] mass of ice required
[tex] T_e= 49C[/tex] equilibrium temperature
[tex]L_f = 80 cal/g [/tex] represent the latent heat of fusin since the ice change the state to liquid.
Solution to the problem
Using this formula:
[tex] \sum_{i=1}^n Q_i = 0[/tex]
We have this:
[tex] m_p cp_p (T_e -T_{ip}) + m_{c} cp_c (T_e -T_{ic}) +m_i L_f + m_i cp_w (T_e -0) =0[/tex]
Now we can replace and we have this:
[tex] 303 gr *(0.260 cal/g C) (49-71)C + 0.161 gr*(1 cal/g C)(49-71)C +m_i [80 cal/gr+(1cal/g C)(49-0)C]=0[/tex]
And now we can solve for [tex] m_i[/tex] and we have:
[tex]-1733.16cal -3.542cal +m_i [129 cal/g]=0[/tex]
[tex]m_i =\frac{1736.702 cal}{129 cal/gr}=13.46 gr[/tex]
So we need to add 13.46 gr of ice in order to reach the final equilibrium temperature of 49 C