1. The radioactive source you will be working with in this lab is Cs-137. Look up the half-life of this material and report the value in units of seconds. 2. The relationship between decay constant (l) and half-life is:

Respuesta :

The question is incomplete, here is the complete question:

1. The radioactive source you will be working with in this lab is Cs-137. Look up the half-life of this material and report the value in units of seconds.

2. The relationship between decay constant (l) and half-life is:

[tex]t_{1/2}=\frac{\ln 2}{k}[/tex]

For Cs-137, what is the value of 'k' in [tex]s^{-1}[/tex]

Answer:

For 1: The half life for Cs-137 isotope is [tex]9.51\times 10^8s[/tex]

For 2: The rate constant of Cs-137 isotope is [tex]7.29\times 10^{-10}s^{-1}[/tex]

Explanation:

  • For 1:

Half life is defined as the time taken for half of the reaction to complete. This is also defined as the time in which the concentration of a reactant is reduced to half of its original value.

The half life for Cs-137 isotope is [tex]9.51\times 10^8s[/tex]

  • For 2:

The relationship between decay constant (l) and half-life is: given by the equation:

[tex]t_{1/2}=\frac{\ln 2}{k}[/tex]

where,

[tex]t_{1/2}[/tex] = half life of Cs-137 isotope = [tex]9.51\times 10^8s[/tex]

k = rate constant

Putting values in above equation, we get:

[tex]9.51\times 10^8s=\frac{\ln 2}{k}\\\\k=\frac{\ln 2}{9.51\times 10^8}=7.29\times 10^{-10}s^{-1}[/tex]

Hence, the rate constant of Cs-137 isotope is [tex]7.29\times 10^{-10}s^{-1}[/tex]