Answer:
T= A person selected in the poll travel to Europe
NT= A person selected in the poll NOT travel to Europe
For this case we have the following respondents for each event
n(T)= 68
n(NT) = 124
So then the total of people for the poll are:
[tex] n = n(T) + n(NT)= 68 +124= 192[/tex]
And we are interested on the probability of getting someone who has traveled to Europe, and we can use the empirical definition of probability given by:
[tex] p =\frac{Possible}{Total}[/tex]
And if we replace we got:
[tex] p = \frac{n(T)}{n}= \frac{68}{192}= 0.354[/tex]
So then the probability of getting someone who has traveled to Europe is 0.354
Step-by-step explanation:
For this case we define the following events:
T= A person selected in the poll travel to Europe
NT= A person selected in the poll NOT travel to Europe
For this case we have the following respondents for each event
n(T)= 68
n(NT) = 124
So then the total of people for the poll are:
[tex] n = n(T) + n(NT)= 68 +124= 192[/tex]
And we are interested on the probability of getting someone who has traveled to Europe, and we can use the empirical definition of probability given by:
[tex] p =\frac{Possible}{Total}[/tex]
And if we replace we got:
[tex] p = \frac{n(T)}{n}= \frac{68}{192}= 0.354[/tex]
So then the probability of getting someone who has traveled to Europe is 0.354