Find the largest interval which includes x = 0 for which the given initial-value problem has a unique solution. (Enter your answer using interval notation.) (x − 3)y'' + 4y = x, y(0) = 0, y'(0) = 1

Respuesta :

Answer:

[tex](-\infty,3)[/tex]

Step-by-step explanation:

We are given that

[tex](x-3)y''+4y=x[/tex]

[tex]y''+\frac{4}{x-3}y=\frac{x}{x-3}[/tex]

y(0)=0

y'(0)=1

By comparing with

[tex]y''+p(x)y'+q(x)y=g(x)[/tex]

We get

[tex]p(x)=\frac{4}{x-3}[/tex]

[tex]g(x)=\frac{x}{x-3}[/tex]

q(x)=0

p(x),q(x) and g(x) are continuous for all real values of x except 3.

Interval on which p(x),q(x) and g(x) are continuous

[tex](-\infty,3)[/tex]and (3,[tex]\infty)[/tex]

By unique existence theorem

Largest interval which contains 0=[tex](-\infty,3)[/tex]

Hence, the larges interval on which includes x=0 for which given initial value problem has unique solution=[tex](-\infty,3)[/tex]

The largest interval on which includes x=0 for which given initial-value problem has unique solution is [tex](-\infty, 3)[/tex]

The given parameters are:

(x − 3)y'' + 4y = x,

y(0) = 0

y'(0) = 1

Divide the equation (x − 3)y'' + 4y = x through by (x - 3)

[tex]y'' + \frac{4y}{x - 3} = \frac{x}{x - 3}[/tex]

Compare the above equation to the following equation

y" + p(x) y' +  q(x)y = g(x)

Then, we have:

[tex]p(x) = \frac{4y}{x - 3}[/tex]

[tex]q(x) = 0[/tex]

[tex]g(x) = \frac x{x - 3}[/tex]

The domains of functions p(x) and g(x) are all set of real values except 3

This is represented as:

[tex](-\infty, 3)\ u\ (3,\infty)[/tex]

Using the unique existence theorem, we have:

The largest interval that contains x = 0 is [tex](-\infty, 3)[/tex]

Hence, the largest interval on which includes x=0 for which given initial-value problem has unique solution is [tex](-\infty, 3)[/tex]

Read more about intervals at:

https://brainly.com/question/1399055