Answer:
D.) 0.7471
Step-by-step explanation:
Mean=μ=100
Standard deviation=σ=15
We know that IQ score are normally distributed with mean 100 and standard deviation 15.
n=50
According to central limit theorem, if the population is normally distributed with mean μ and standard deviation σ then the distribution of sample taken from this population will be normally distributed with mean μxbar and standard deviation σxbar=σ/√n.
Mean of sampling distribution=μxbar=μ=100.
Standard deviation of sampling distribution=σxbar=σ/√n=15/√50=2.1213.
We are interested in finding the probability of sample mean between 98 and 103.
P(98<xbar<103)=?
Z-score associated with 98
Z-score=(xbar-μxbar)/σxbar
Z-score=(98-100)/2.1213
Z-score=-2/2.1213
Z-score=-0.94
Z-score associated with 103
Z-score=(xbar-μxbar)/σxbar
Z-score=(103-100)/2.1213
Z-score=3/2.1213
Z-score=1.41
P(98<xbar<103)=P(-0.94<Z<1.41)
P(98<xbar<103)=P(-0.94<Z<0)+P(0<Z<1.41)
P(98<xbar<103)=0.3264+0.4207
P(98<xbar<103)=0.7471
Thus, the probability that the sample mean is between 98 and 103 is 0.7471.