Answer:
(a) 380.96 pC
(b) 3.25V
Explanation:
(a) Before immersion,
[tex]C_{air}[/tex] = [tex]\frac{E_{0}A }{d}[/tex]
⇒(8.85E-12× 25E-4× 260) ÷(0.0151)
= 380.96 pC
(b) Charge on the plates after immersion can be calculated by,
Q = ΔV×C
= Δ[tex]V_{air}[/tex] ÷ K
where K is the constant for distilled water
= 260 ÷ 80
= 3.25V
Answer:
Explanation:
(a) Charge on the plates before immersion
as we know that,
C = εA/d
C = 8.85×[tex]10^{-12}[/tex]× 25×[tex]10^{-4}[/tex]/ 1.51×[tex]10^{-2}[/tex]
= 1.46×[tex]10^{-12}[/tex]
Q = CV
= (1.46×[tex]10^{-12}[/tex]) (260)
= 3.796×[tex]10^{-10}[/tex] C
(b) Charge on the plates after immersion
Q = 3.796×[tex]10^{-10}[/tex] C
The charge will remain the same, as the capacitor was disconnected before it was immersed.