Respuesta :
Answer:
Part a
For this case after do the operations we got a value for the correlation coeffcient of:
[tex] r =0.506[/tex]
With this value we can find the determination coefficient:
[tex] r^2 = 0.506^2 = 0.256[/tex]
And with this value we can analyze the proportion of variance explained by one variable and the other. So we can conclude that 25.6% of the mother's BMI variation is explained by the daugther's BMI.
Part a
Since the BMI is a relation between height and weight, other possible variables that can explain the variability are (weight , height, age)
Step-by-step explanation:
Previous concepts
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
And in order to calculate the correlation coefficient we can use this formula:
[tex]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}[/tex]
Solution to the problem
Part a
For this case after do the operations we got a value for the correlation coeffcient of:
[tex] r =0.506[/tex]
With this value we can find the determination coefficient:
[tex] r^2 = 0.506^2 = 0.256[/tex]
And with this value we can analyze the proportion of variance explained by one variable and the other. So we can conclude that 25.6% of the mother's BMI variation is explained by the daugther's BMI.
Part a
Since the BMI is a relation between height and weight, other possible variables that can explain the variability are (weight , height, age)