Answer:
Light of wavelength 200 nm will have lowest frequency in while traveling through diamond.
Explanation:
Speed of the light in vacuum = c
Relation between speed of light , wavelength (λ) and frequency (ν);
[tex]\nu =\frac{c}{\lambda }[/tex]
Speed of light in a medium = c' = c/n
[tex]\nu =\frac{c'}{\lambda }=\frac{c}{n\times \lambda }[/tex]...[1]
Where : n = refractive index of a medium
So, the medium with greater value of refractive index lower the speed of light to greater extent.
From [1] , we can see that frequency of light is inversely proportional to the refractive index of the medium :
[tex]\nu \propto \frac{1}{n} [/tex]
This means that higher the value of refractive index lower will be the value of frequency of light in that medium or vice-versa.
According to question, light of wavelength 200 nm will have lowest frequency in while traveling through diamond because refractive index of diamond out of the given mediums is greatest.
Increasing order of refractive indices:
[tex]H_2<H_2O<CCL_4<\text{Silicon oil}< Diamond[/tex]
Decreasing order of frequency of light 210 nm in these medium :
[tex]H_2>H_2O>CCL_4>\text{Silicon oil}> Diamond[/tex]