Answer: Average kinetic energy is greater than gravitational potential energy.
Explanation: The average kinetic energy formulae for a molecule of a gas relative to temperature (in Kelvin) is given below as
E = 3/2 (KT).
Where E = average kinetic energy =?
K = boltzman constant = 1.381×10^-23 m²kg/s²k
T = temperature = 300 k
By substituting the parameters in the formulae, we have that
E = 3/2 ×( 1.381×10^-23 × 300)
E = 1.5 × 4.143×10^-21
E = 6.2145×10^-21 J
To get the gravitational potential energy, we use the fact that
Gravitational potential energy = gravitational energy at the top - gravitational energy at bottom.
At the top, the height of cube is h= 15cm = 0.15m, g = acceleration dude to gravity = 9.8m/s², m = mass of molecule of oxygen = 1.661×10^-27 kg
Gravitational potential energy = mgh = 1.661×10^-27× 9.8 × 0.15 = 2.442×10^-27 J
At the bottom, height is zero, hence gravitational potential energy is also zero.
Hence the final gravitational potential energy = potential energy at top - potential energy at bottom =
2.442×10^-27 - 0 = 2.442×10^-27 J.
Gravitational potential energy = 2.442×10^-27 J
Average kinetic energy = 6.2145×10^-21 J
As we can see that the average kinetic energy is bigger than the gravitational potential energy.