Answer:
For a: The standard Gibbs free energy of the reaction is -347.4 kJ
For b: The standard Gibbs free energy of the reaction is 746.91 kJ
Explanation:
Relationship between standard Gibbs free energy and standard electrode potential follows:
[tex]\Delta G^o=-nFE^o_{cell}[/tex] ............(1)
The given chemical equation follows:
[tex]2Ce^{4+}(aq.)+3I^{-}(aq.)\rightarrow 2Ce^{3+}(aq.)+I_3^-(aq.)[/tex]
Oxidation half reaction: [tex]Ce^{4+}(aq.)\rightarrow Ce^{3+}(aq.)+e^-[/tex] ( × 2)
Reduction half reaction: [tex]3I^_(aq.)+2e^-\rightarrow I_3^-(aq.)[/tex]
We are given:
[tex]n=2\\E^o_{cell}=+1.08V\\F=96500[/tex]
Putting values in equation 1, we get:
[tex]\Delta G^o=-2\times 96500\times (+1.80)=-347,400J=-347.4kJ[/tex]
Hence, the standard Gibbs free energy of the reaction is -347.4 kJ
The given chemical equation follows:
[tex]6Fe^{3+}(aq.)+2Cr^{3+}+7H_2O(l)(aq.)\rightarrow 6Fe^{2+}(aq.)+Cr_2O_7^{2-}(aq.)+14H^+(aq.)[/tex]
Oxidation half reaction: [tex]Fe^{3+}(aq.)\rightarrow Fe^{2+}(aq.)+e^-[/tex] ( × 6)
Reduction half reaction: [tex]2Cr^{2+}(aq.)+7H_2O(l)+6e^-\rightarrow Cr_2O_7^{2-}(aq.)+14H^+(aq.)[/tex]
We are given:
[tex]n=6\\E^o_{cell}=-1.29V\\F=96500[/tex]
Putting values in equation 1, we get:
[tex]\Delta G^o=-6\times 96500\times (-1.29)=746,910J=746.91kJ[/tex]
Hence, the standard Gibbs free energy of the reaction is 746.91 kJ