1) An aerosol can contains gases under a pressure of 4.50 atm at 20.0 degrees Celsius. If the can is left on a hot, sandy beach, the pressure of the gases increases to 4.78 atm. What is the Celsius temperature on the beach? HINT: Temperature must be in Kelvin while solving the problem.
2) A sample of gas contains NO, NO2, and N2O. The pressure of the gas mixture is 4.68 atm. The pressure of NO is 501.6 mm Hg, whereas the pressure of NO2 is 2.54 atm. What is the pressure of N2O? HINT: All pressure units must be the same.

Respuesta :

Neetoo

Answer:

Explanation:

1) An aerosol can contains gases under a pressure of 4.50 atm at 20.0 degrees Celsius. If the can is left on a hot, sandy beach, the pressure of the gases increases to 4.78 atm. What is the Celsius temperature on the beach?

Given data:

Initial pressure = 4.50 atm

Initial temperature = 20.0°C (20 +273 = 293 K)

Final pressure = 4.78 atm

Final temperature = ?  (in °C)

Solution:

According to the Gay-Lussac law,

The temperature of given constant amount of a gas at constant volume is directly proportional to its absolute temperature.

Mathematical expression:

P₁/T₁ = P₂/T₂

P₁ = Initial pressure

T₁ = Initial temperature

P₂ = Final pressure

T₂ = Final temperature

Now we will put the values:

P₁/T₁ = P₂/T₂

4.50 atm / 293 k = 4.78 atm / T₂

T₂ = 4.78 atm. 293 k / 4.50 atm

T₂ = 1400.54  atm.K  / 4.50 atm

T₂ = = 311.23 k

K to °C

311.23 k - 273.15 = 38.08°C

2) A sample of gas contains NO, NO2, and N2O. The pressure of the gas mixture is 4.68 atm. The pressure of NO is 501.6 mm Hg, whereas the pressure of NO2 is 2.54 atm. What is the pressure of N2O? HINT: All pressure units must be the same.

Given data:

Total pressure of gaseous mixture = 4.68 atm

Pressure of NO = 501.6 mmHg

Pressure of NO₂ = 2.54 atm

Pressure of N₂O = ?

Solution:

The given problem will be solve through the Dalton law of partial pressure.

According to this law,

" The total pressure of mixture of a gas is equal to the sum of partial pressure of all the component of gas"

Now we will convert the pressure of NO₂  in to atm.

Pressure of NO = 501.6/760 = 0.66 atm

Formula:

Total pressure = partial pressure of NO +  partial pressure of NO₂  +  partial pressure of N₂O

4.68 atm = 0.66 atm +  2.54 atm +  partial pressure of N₂O

4.68 atm = 3.2 atm +  partial pressure of N₂O

Partial pressure of N₂O = 4.68 atm - 3.2 atm

Partial pressure of N₂O = 1.48 atm

To confirm the answer:

Total pressure = partial pressure of NO +  partial pressure of NO₂  +  partial pressure of N₂O

4.68 atm =  0.66 atm +  2.54 atm +  1.48 atm

4.68 atm = 4.68 atm