Respuesta :
Answer:
[tex]44,000 Nm^2/C[/tex]
Explanation:
The electric flux through a certain surface is given by (for a uniform field):
[tex]\Phi = EA cos \theta[/tex]
where:
E is the magnitude of the electric field
A is the area of the surface
[tex]\theta[/tex] is the angle between the direction of the field and of the normal to the surface
In this problem, we have:
[tex]E=1.1\cdot 10^4 N/C[/tex] is the electric field
L = 2.0 m is the side of the sheet, so the area is
[tex]A=L^2=(2.0)^2=4.0 m^2[/tex]
[tex]\theta=0^{\circ}[/tex], since the electric field is perpendicular to the surface
Therefore, the electric flux is
[tex]\Phi =(1.1\cdot 10^4)(4.0)(cos 0^{\circ})=44,000 Nm^2/C[/tex]
The electric flux through the sheet will be "44,000 Nm²/C".
Electric field:
An electric field seems to be an area of space that surrounds an electrically charged particle as well as object whereby an electric charge will indeed experience attraction.
According to the question,
Magnitude of electric field, E = 1.1 × 10⁴ N/C
Length, L = 2.0 m
We know,
The area will be:
→ A = L²
By substituting the value,
= (2.0)²
= 4.0 m²
hence,
The electric flux will be:
→ [tex]\Phi[/tex] = EA Cosθ
By substituting the values,
= [tex](1.1.10^4)(4.0)(Cos 0^{\circ})[/tex]
= 44,000 Nm²/C
Thus the above answer is appropriate.
Find out more information about electric field here:
https://brainly.com/question/14372859