Respuesta :
Answer:
v' = 0.714 m/s
Explanation:
Solution:
- Assuming no external torque is acting on the system then the angular momentum is conserved for the system.
- The initial momentum angular Mi and final angular momentum Mf are as follows:
Mi = Mf
m*L*v = m*x*L*v'
Where,
m : mass of the telescope
L : Length of teether line
v: Initial speed
v' : Changed speed.
- Then we have:
L*v = x*L*v'
v' = v / x
v' = 2 / 2.8
v' = 0.714 m/s
Answer:
The answer to the question is
The linear speed of the telescope will be 5.6 m/s if the length of the line is changed to x*L where x = 2.8; and initial velocity v = 2 m/s
Explanation:
Speed = v₁ = ωL = 2 m/s
When the line is changed to x*L where x = 2.8 the linear speed will be
v₂ = 2.8 × L× ω = 2.8× 2 = 5.6 m/s
The linear speed varies with the angular speed following the relation v/r =ω where
ω = angular speed
v = linear speed and
r = radius of the path of travel of the object at the vertex