Water flowing in a horizontal 30-cm-diameter pipe at 5 m/s and 300 kPa gage enters a 90° bend reducing section, which connects to a 15-cm-diameter vertical pipe. The inlet of the bend is 50 cm above the exit. Neglecting any frictional and gravitational effects, determine the net resultant force exerted on the reducer by the water

Respuesta :

Answer:

The net resultant force is 23.64 kN with an angle of 12.9° with positive x-axis.

Explanation:

The mass flow rate of the fluid at inlet is equal to:

[tex]m=pA_{1} V_{1} =p\frac{\pi }{4} d_{1}^{2} V_{1}[/tex]

Where

p = density = 1000 kg/m³

d₁ = inlet diameter = 30 cm = 0.3 m

V₁ = velocity of fluid = 5 m/s

[tex]m=1000*\frac{\pi }{4} *0.3^{2} *5=353.43kg/s[/tex]

This mass flow is constant through the duct, thus:

minlet = moulet

[tex]pA_{1} V_{1} =pA_{2} V_{2} \\353.43=p\frac{\pi }{4} d_{2}^{2} V_{2}[/tex]

Where

d₂ = outlet diameter = 15 cm = 0.15 m

V₂ = ?

Clearing V₂:

[tex]353.43=1000\frac{\pi }{4} *0.15^{2} *V_{2} \\V_{2} =20m/s[/tex]

Bernoulli's equation will be used to calculate the pressure at the outlet:

[tex]\frac{P_{1} }{pg} +\frac{V_{1}^{2} }{2g} +z_{1} =\frac{P_{2} }{pg} +\frac{V_{2}^{2} }{2g} +z_{2}[/tex]

Where:

P₁ = pressure at inlet = 300x10³ Pa

P₂ = pressure at exit = ?

z₁ and z₂ = datum heads = z₁ = 0.5 m z₂ = 0

[tex]\frac{300x10^{3} }{1000*9.8} +\frac{5^{2} }{2*9.81} +0.5=\frac{P_{2} }{1000*9.8} +\frac{20^{2} }{2*9.81} +0\\32.36=\frac{P_{2} }{1000*9.8} +20.39\\P_{2} =117425.7kPa[/tex]

The force in x-direction using the moment expression is equal to:

[tex]F_{x} =-\beta mV_{1} -P_{1} A_{1}[/tex]

Where

β = momentum flux = 1.04

[tex]F_{x} =-1.04*353.43*5-300x10^{3} *(\frac{\pi }{4} )*0.3^{2} =-23043.6N=-23.04kN[/tex]

The force in y-direction using the moment expression is:

[tex]F_{y} =-\beta mV_{2} +P_{2} A_{2} =-1.04*300x10^{3} *20+117.43*1000*\frac{\pi }{4} *0.15^{2} =-5276.18N=-5.28kN[/tex]

The net resultant force is equal to:

[tex]F_{net} =\sqrt{F_{x}^{2}+F_{y}^{2} } =\sqrt{(-23.04^{2})+(-5.28^{2}) } =23.64kN[/tex]

The angle of resultant force is equal to:

θ = tan⁻¹(Fy/Fx) = tan⁻¹(-5.28/-23.04) = 12.9° with positive x-axis.

The net resultant force exerted on the reducer by the water is :

  • 23.64 kN   ∠ 12.9°   in the positive x-axis

Given data :

p = 1000 kg/m³

d₁ = 0.3 m

V₁ = 5 m/s

d₂ = 0.15 m

First step : Calculate the mass flow rate of the fluid at inlet

m = pA₁V₁  = p*[tex]\frac{\pi }{4}[/tex] *d²₁ * V₁  ----- ( 1 )

insert values into equation ( 1 )

m = 353.43 kg/s

Note : mass flow rate at inlet = mass flow rate at outlet

∴ 353.43 kg/s = p * [tex]\frac{\pi }{4}[/tex] * d²₂ * V₂ ----- ( 2 )

V₂ = 353.43 / ( 1000 * [tex]\frac{\pi }{4}[/tex] * 0.15² )

    = 20 m/s

Next step : Determine the outlet pressure ( P₂ )

To calculate the outlet pressure we will apply Bernoulli's equation

Bernoulli's equation : [tex]\frac{P_{1} }{pg} + \frac{V_{1} ^{2} }{2g} + Z_{1} = \frac{P_{2} }{pg} + \frac{V^{2} _{2} }{2g} + Z_{2}[/tex]  ------- ( 3 )

where : P₁ = 300 kPa

             P₂ = ?

             Z₁ = 0.5 ,  Z₂ = 0

Insert values into equation ( 3 )

P₂ = 117425.7 kPa

Next step : Determine force in the x - direction

Fx = -βmV₁ - P₁A₁  ------ ( 4 )

where : β ( momentum flux correction factor ) = 1.04

Insert values into equation ( 4 )

Fx = - 23.04 kN

Next :  Determine Force in the y - direction

Fy =  -βmV₂ + P₂A₂  --- ( 5 )

where : β ( momentum flux correction factor ) = 1.04

insert values into equation ( 5 )

Fy = - 5.28 kN

Final step : Determine the net resultant force

Fnet = [tex]\sqrt{fy^{2} + fx^{2} }[/tex] = 23.64 kN

Angle of net resultant force = Tan⁻¹ ( Fy / Fx ) = Tan⁻¹ ( -5.28 / -23.04 )

                                                                            = 12.9°

Hence we can conclude that The net resultant force exerted on the reducer by the water is : 23.64 kN ∠ 12.9°  in the positive x-axis

Learn more about resultant force : https://brainly.com/question/4404327