A very long, straight solenoid with a diameter of 3.00 cm is wound with 40 turns of wire per centimeter, and the windings carry a current of 0.240 A. A second coil having N turns and a larger diameter is slipped over the solenoid so that the two are coaxial. The current in the solenoid is ramped down to zero over a period of 0.70 s. What average emf is induced in the second coil if it has a diameter of 3.90 cm and N = 48? Express your answer in microvolts to two significant figures.What is the induced emf if the diameter is 7.80 cm and N = 96? Express your answer in volts to two significant figures.

Respuesta :

Answer:

Induced emf in first coil is 0.986 [tex]\mu T[/tex] and in second case 0.396 [tex]\mu T[/tex]

Explanation:

Given:

Number of turns per centimeter [tex]n = 40[/tex]

Current [tex]I = 0.240[/tex] A

Current rate [tex]\frac{dI}{dt} = \frac{0.240}{0.70} = 0.343[/tex] [tex]\frac{A}{s}[/tex]

The magnetic field in solenoid is given by,

  [tex]B = \mu _{o} nI[/tex]

Where [tex]\mu _{o} = 4\pi \times 10^{-7}[/tex]

We write,

  [tex]\frac{dB}{dt} = \mu_{o} n \frac{dI}{dt}[/tex]

  [tex]\frac{dB}{dt} = 4\pi \times 10^{-7} \times 40 \times 0.343[/tex]

  [tex]\frac{dB}{dt} = 172.3 \times 10^{-7}[/tex]

(A)

Number of turns [tex]N = 48[/tex]

Radius of coil [tex]r = \frac{d}{2} = 1.95 \times 10^{-2}[/tex] m

From faraday's law

   [tex]\epsilon = NA \frac{dB}{dt}[/tex]

Where [tex]A = \pi r^{2} = 3.14 (1.95 \times 10^{-2} ) ^{2} = 11.93 \times 10^{-4}[/tex] [tex]m^{2}[/tex]

   [tex]\epsilon = 48 \times 11.93 \times 10^{-4} \times 172.3 \times 10^{-7}[/tex]  

   [tex]\epsilon = 98665.87 \times 10^{-11}[/tex]

   [tex]\epsilon = 0.986 \mu T[/tex]

(B)

Number of turns [tex]N = 96[/tex]

Radius of coil [tex]r = \frac{d}{2} = 3.9 \times 10^{-2}[/tex] m

From faraday's law

   [tex]\epsilon = NA \frac{dB}{dt}[/tex]

Where [tex]A = \pi r^{2} = 3.14 (3.9 \times 10^{-2} ) ^{2} = 47.76 \times 10^{-4}[/tex] [tex]m^{2}[/tex]

   [tex]\epsilon = 48 \times 47.96 \times 10^{-4} \times 172.3 \times 10^{-7}[/tex]  

   [tex]\epsilon = 396648.38 \times 10^{-11}[/tex]

   [tex]\epsilon = 0.396 \mu T[/tex]

Therefore, induced emf in first coil is 0.986 [tex]\mu T[/tex] and in second case 0.396 [tex]\mu T[/tex]