At an elevated temperature, Kp=4.2 x 10^-9 for the reaction 2HBr (g)---> +H2(g) + Br2 (g). If the initial partial pressures of HBr, H2, and Br2 are 1.0 x 10^-2 atm, 2.0 x 10^-4 atm, and 2.0 x 10^-4 atm, respecivtely, what is the equilbrium partial pressure of H2?

Respuesta :

Answer : The partial pressure of [tex]H_2[/tex] at equilibrium is, 1.0 × 10⁻⁶

Explanation :

The partial pressure of [tex]HBr[/tex] = [tex]1.0\times 10^{-2}atm[/tex]

The partial pressure of [tex]H_2[/tex] = [tex]2.0\times 10^{-4}atm[/tex]

The partial pressure of [tex]Br_2[/tex] = [tex]2.0\times 10^{-4}atm[/tex]

[tex]K_p=4.2\times 10^{-9}[/tex]

The balanced equilibrium reaction is,

                                [tex]2HBr(g)\rightleftharpoons H_2(g)+Br_2(g)[/tex]

Initial pressure    1.0×10⁻²       2.0×10⁻⁴      2.0×10⁻⁴

At eqm.            (1.0×10⁻²-2p)   (2.0×10⁻⁴+p)  (2.0×10⁻⁴+p)

The expression of equilibrium constant [tex]K_p[/tex] for the reaction will be:

[tex]K_p=\frac{(p_{H_2})(p_{Br_2})}{(p_{HBr})^2}[/tex]

Now put all the values in this expression, we get :

[tex]4.2\times 10^{-9}=\frac{(2.0\times 10^{-4}+p)(2.0\times 10^{-4}+p)}{(1.0\times 10^{-2}-2p)^2}[/tex]

[tex]p=-1.99\times 10^{-4}[/tex]

The partial pressure of [tex]H_2[/tex] at equilibrium = (2.0×10⁻⁴+(-1.99×10⁻⁴) )= 1.0 × 10⁻⁶

Therefore, the partial pressure of [tex]H_2[/tex] at equilibrium is, 1.0 × 10⁻⁶