Respuesta :
Answer:
a)(10-x)/5
b)2
Step-by-step explanation:
two points the staright line passes thorugh are (10,0) and (5,1)
from the two points calculate the equation of the line
equation is y = (-1/5)x +2
eqn is in the form of y = mx +c where c is the y intercept
R is the y-intercept, so r is 2
Answer:
see explanation
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
(a)
Calculate m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (5, 1) and (x₂, y₂ ) = (10, 0)
m = [tex]\frac{0-1}{10-5}[/tex] = - [tex]\frac{1}{5}[/tex], thus
y = - [tex]\frac{1}{5}[/tex] x + c ← is the partial equation
To find c substitute (10, 0) into the partial equation
0 = - 2 + c ⇒ c = 0 + 2 = 2
y = - [tex]\frac{1}{5}[/tex] x + 2 ← equation of line
(b)
From the equation the y - intercept c = 2, thus
R(0, 2 )