Respuesta :

Answer:

a)(10-x)/5

b)2

Step-by-step explanation:

two points the staright line passes thorugh are (10,0) and (5,1)

from the two points calculate the equation of the line

equation is y = (-1/5)x +2

eqn is in the form of y = mx +c where c is the y intercept

R is the y-intercept, so r is 2

Answer:

see explanation

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

(a)

Calculate m using the slope formula

m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]

with (x₁, y₁ ) = (5, 1) and (x₂, y₂ ) = (10, 0)

m = [tex]\frac{0-1}{10-5}[/tex] = - [tex]\frac{1}{5}[/tex], thus

y = - [tex]\frac{1}{5}[/tex] x + c ← is the partial equation

To find c substitute (10, 0) into the partial equation

0 = - 2 + c ⇒ c = 0 + 2 = 2

y = - [tex]\frac{1}{5}[/tex] x + 2 ← equation of line

(b)

From the equation the y - intercept c = 2, thus

R(0, 2 )