The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). x2y'' + 2xy' − 6y = 0; y1 = x2

Respuesta :

Here is the right and correct question:

The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2,

[tex]y_2 = y_1 (x) \int\limits \dfrac{e ^{-\int\limits P(x) dx} }{y^2_1 (x)} dx \ \ \ \ \ (5)[/tex]

as instructed, to find a second solution [tex]y_2(x)[/tex]

[tex](1-2x-x^2)y''+2(1+x)y' -2y =0; \ \ \ y_1=x+1[/tex]

Answer:

[tex]y_2 = -2-x^2-x[/tex]

Step-by-step explanation:

Let take a look at the differential equation:

[tex](1-2x-x^2)y''+2(1+x)y' -2y =0[/tex]

So; [tex]y''+ \dfrac{2(1+x)}{(1-2x-x^2)}y' - \dfrac{2}{(1-2x-x^2)}y =0[/tex]

where;

[tex]P(x) = \dfrac{2(1+x)}{(1-2x-x^2)}[/tex]     ;

Also:

[tex]Q(x) = \dfrac{-2}{(1-2x-x^2)}[/tex]

The task is to find the value of [tex]y_2(x)[/tex] by using the reduction formula [tex]y_2 = y_1 (x) \int\limits \dfrac{e^{-\int\limits P(x) dx }}{y_1^2(x)}dx[/tex]  such that [tex]y_1(x) =x+1[/tex]

simplifying [tex]y_2 = y_1 (x) \int\limits \dfrac{e^{-\int\limits P(x) dx }}{y_1^2(x)}dx[/tex] ;we have:

[tex]y_2 =(x+1) \int\limits \dfrac{e ^{-\int\limits \frac{2(1+x)}{(1-2x-x^2)}}}{(x+1)^2} \ \ dx[/tex]

[tex]y_2 =(x+1) \int\limits \dfrac{e ^{\int\limits \frac{-2(1+x)}{(1-2x-x^2)}}}{(x+1)^2} \ \ dx[/tex]

[tex]y_2 =(x+1) \int\limits \dfrac{e^{In(1-2x-x^2)}}{(x+1)^2}\ \ dx[/tex]

[tex]y_2 =(x+1) \int\limits \dfrac{(1-2x-x^2)}{(x+1)^2} \ \ dx[/tex]

[tex]y_2 =(x+1) \int\limits \dfrac{1}{(x+1)^2}-\dfrac{2x}{(x+1)^2}- \dfrac{x^2}{(x+1)^2} \ \ dx[/tex]

Let assume that [tex]I_1[/tex] = [tex]\int\limits \dfrac{-2x}{(x+1)^2} \ \ dx[/tex]

[tex]= \int\limits \dfrac{-(2x+2-2) }{(x+1)^2} \ \ dx[/tex]

[tex]= \int\limits \dfrac{-(2x+2) }{(x+1)^2} + \dfrac{2}{(x+1)^2} \ \ dx[/tex]

[tex]=- In(x+1)^2 - \dfrac{2}{(x+1)}[/tex]

Also : Let [tex]I_2 = \int\limits \dfrac{x^2}{(x+1)^2} \ \ dx[/tex]

[tex]= \int\limits \dfrac{(x+1-1)^2}{(x+1)^2} \ \ dx[/tex]

[tex]= \int\limits \dfrac{(x+1)^2+1-2(x+1)}{(x+1)^2} \ \ dx[/tex]

[tex]= \int\limits \ 1 + \dfrac{1}{(x+1)^2}- \dfrac{2}{(x+1)} \ \ dx[/tex]

[tex]= x - \dfrac{1}{(x+1)}- 2 \ In (x+1)[/tex]

Replacing the value of [tex]I_1[/tex] and [tex]I_2[/tex] in the  equation

[tex]y_2 =(x+1) \int\limits \dfrac{1}{(x+1)^2}-\dfrac{2x}{(x+1)^2}- \dfrac{x^2}{(x+1)^2} \ \ dx[/tex]

[tex]y_2 =(x+1) [ \ \int\limits \dfrac{-1}{(x+1)}+ (-In(x+1)^2-\dfrac{2}{(x+1)})-(x-\dfrac{1}{(x+1)}-2 In(x+1))][/tex]

[tex]y_2 =(x+1) [ \ \int\limits \dfrac{-1}{(x+1)}- In(x+1)^2-\dfrac{2}{(x+1)}-x+\dfrac{1}{(x+1)}+2 In(x+1))][/tex]

[tex]y_2 =(x+1) [ \ \int\limits \dfrac{-1}{(x+1)}- 2In(x+1) -\dfrac{2}{(x+1)}-x + \dfrac{1}{(x+1)} +2 In(x+1)][/tex]

[tex]y_2 = -2-x(x+1)[/tex]

Therefore;

[tex]y_2 = -2-x^2-x[/tex]