Respuesta :
Answer:
The total mechanical energy does not change if the value of the mass is changed. That is, remain the same
Explanation:
The total mechanical energy of a spring-mass system is equal to the elastic potential energy where the object is at the amplitude of the motion. That is:
[tex]E=U=\frac{1}{2}kA^2[/tex] (1)
k: spring constant
A: amplitude of the motion = 2.0cm
As you can notice in the equation (1), the total mechanical energy of the system does not depend of the mass of the object. It only depends of the amplitude A and the spring constant.
Hence, if you use a mass of 0.40kg the total mechanical energy is the same as the obtained with a mas 0.20kg
Remain the same
After using a mass of 0.40 kg the total mechanical energy is the same as the obtained with a mass of 0.20 kg
If the object is at the amplitude of the motion, the total mechanical energy of a spring-mass system is equal to the elastic potential energy.
[tex]\bold {E = U =\dfrac 1{2} kA^2}[/tex]
Where,
k: spring constant
A: amplitude of motion = 2.0 cm
In the equation, the total mechanical energy only depends of the amplitude and the spring constant. It does not depend on the mass of the object. It
Therefore, after using a mass of 0.40 kg the total mechanical energy is the same as the obtained with a mass of 0.20 kg
To know more about mechanical energy,
https://brainly.com/question/15172211