Answer:
the energy vacancies for formation in silver is [tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]
Explanation:
Given that:
the equilibrium number of vacancies at 800 °C
i.e T = 800°C is 3.6 x 10¹⁷ cm3
Atomic weight of sliver = 107.9 g/mol
Density of silver = 9.5 g/cm³
Let's first determine the number of atoms in silver
Let silver be represented by N
SO;
[tex]N = \dfrac{N_A* \rho _{Ag}}{A_{Ag}}[/tex]
where ;
[tex]N_A =[/tex] avogadro's number = [tex]6.023*10^{23} \ atoms/mol[/tex]
[tex]\rho _{Ag}[/tex] = Density of silver = 9.5 g/cm³
[tex]A_{Ag}[/tex] = Atomic weight of sliver = 107.9 g/mol
[tex]N = \dfrac{(6.023*10^{23} \ atoms/mol)*( 9.5 \ g/cm^3)}{(107.9 \ g/mol)}[/tex]
N = 5.30 × 10²⁸ atoms/m³
However;
The equation for equilibrium number of vacancies can be represented by the equation:
[tex]N_v = N \ e^{^{-\dfrac{Q_v}{KT}}[/tex]
From above; Considering the natural logarithm on both sides; we have:
[tex]In \ N_v =In N - \dfrac{Q_v}{KT}[/tex]
Making [tex]Q_v[/tex] the subject of the formula; we have:
[tex]{Q_v = - {KT} In( \dfrac{ \ N_v }{ N})[/tex]
where;
K = Boltzmann constant = 8.62 × 10⁻⁵ eV/atom .K
Temperature T = 800 °C = (800+ 273) K = 1073 K
[tex]Q _v =-( 8.62*10^{-5} \ eV/atom.K * 1073 \ K) \ In( \dfrac{3.6*10^{17}}{5.3 0*10^{28}})[/tex]
[tex]\mathbf{Q_v = 2.38 \ eV/atom}[/tex]
Where;
1 eV = 1.602176565 × 10⁻¹⁹ J
Then
[tex]Q_v = (2.38 \ * 1.602176565 * 10^{-19} ) J/atom }[/tex]
[tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]
Thus, the energy vacancies for formation in silver is [tex]\mathbf{Q_v = 3.069*10^{-4} \ J/atom}[/tex]