Respuesta :
Answer:
5
Step-by-step explanation:
Given the expression (8x² −15x)−(x² −27x) = ax² +bx, we are to determine the value of b-a. Before we determine the vwlue of b-a, we need to first calculate for the value of a and b from the given expression.
On expanding the left hand side of the expression we have;
= (8x² −15x)−(x² −27x)
Open the paranthesis
= 8x² −15x−x²+27x
collect the like terms
= 8x²−x²+27x −15x
= 7x²+12x
Comparing the resulting expression with ax²+bx
7x²+12x = ax²+bx
7x² = ax²
a = 7
Also;
12x = bx
b =12
The value of b - a = 12 - 7
b -a = 5
Hence the value of b-a is equivalent to 5
The value of b minus a is 5
Calculation of the value:
Since the expression is
[tex](8x^2 -15x)-(x^2 -27x) = ax^2 +bx[/tex]
Here we have to expand the left-hand side of the expression so it should be like
[tex]= (8x^2 -15x)-(x^2 -27x)\\\\= 8x^2 -15x-x^2+27x\\\\= 8x^2-x^2+27x -15x\\\\= 7x^2+12x[/tex]
Now
[tex]7x^2+12x = ax^2+bx\\\\7x^2 = ax^2[/tex]
a = 7
Also;
12x = bx
b =12
So,
The value of b - a = 12 - 7
b -a = 5
Hence the value of b-a should be 5
Learn more about equation here: https://brainly.com/question/24540444